Grasshopper

algorithmic modeling for Rhino

3D FingerPrint - need to extract ridges and valleys?? Principal Curvatures Estimation

Hello,

I need to extract ridges and valleys of a 3D fingerprint. The output
should be a ply file which shows exactly where are the ridges and
valleys on 3d fingerprint using different colors.

**Input file** - ply file with just x,y,z locations. I got it from a
3d scanner.
Here is how first few lines of file looks like -

   ply
   format ascii 1.0
   comment VCGLIB generated
   element vertex 6183
   property float x
   property float y
   property float z
   end_header
   -32.3271 -43.9859 11.5124
   -32.0631 -43.983 11.4945
   12.9266 -44.4913 28.2031
   13.1701 -44.4918 28.2568
   13.4138 -44.4892 28.2531
   13.6581 -44.4834 28.1941
   13.9012 -44.4851 28.2684
   ...     ...      ...

In case you need the data - please email me on
**nisha.m234@gmail.com**.

**Algorithm:**
I am trying to find principal curvatures for extracting the ridges and
valleys.

The steps I am following is:
1. Take a point x
2. Find its k nearest neighbors. I used k from 3 to 20.
3. average the k nearest neighbors => gives (_x, _y, _z)
4. compute covariance matrix
5. Now I take eigen values and eigen vectors of this covariance matrix
6. I get u, v and n here from eigen vectors.
   u is a vector corresponding to largest eigen value
   v corresponding to 2nd largest
   n is 3rd smallest vector corresponding to smallest eigen value
7. Then for transforming the point(x,y,z) I compute matrix T
T =
 [ui ]    [u ]    [x - _x]
 [vi ] =  [v ]  x [y - _y]
 [ni ]    [n ]    [z - _z]
8. for each i of the k nearest neighbors:<br>
 [ n1 ]   [u1*u1  u1*v1  v1*v1] [ a ]<br>
 [ n2 ] = [u2*u2  u2*v2  v2*v2] [ b ] <br>
 [... ]   [ ...    ...    ... ] [ c ] <br>
 [ nk ]   [uk*uk  uk*vk  vk*vk]<br>

 Solve this for a, b and c with least squares

9. this equations will give me a,b,c
10. now I compute eigen values of matrix
    [a b
     b a ]

11. This will give me 2 eigen values. one is Kmin and another Kmax.

**My Problem:**
The output is no where close to finding the correct Ridges and
Valleys. I am totally Stuck and frustrated. I am not sure where
exactly I am getting it wrong. I think the normal's are not computed
correctly. But I am not sure. I am very new to graphics programming
and so this maths, normals, shaders go way above my head. Any help
will be appreciated.
**PLEASE PLEASE HELP!!**

**Resources:**
I am using Visual Studio 2010 + Eigen Library + ANN Library.

**Other Options used**
I tried using MeshLab. I used ball pivoting triangles remeshing in
MeshLab and then applied the polkadot3d shader. If correctly
identifies the ridges and valleys. But I am not able to  code it.


**My Function:**
//the function outputs to ply file

       void getEigen()
       {

       int nPts; // actual number of data points
       ANNpointArray dataPts; // data points
       ANNpoint queryPt; // query point
       ANNidxArray nnIdx;// near neighbor indices
       ANNdistArray dists; // near neighbor distances
       ANNkd_tree* kdTree; // search structure

       //for k = 25 and esp = 2, seems to got few ridges
       queryPt = annAllocPt(dim);                                      // allocate query point
       dataPts = annAllocPts(maxPts, dim);                     // allocate data points
       nnIdx = new ANNidx[k];                                          // allocate near neigh indices
       dists = new ANNdist[k];                                         // allocate near neighbor dists
       nPts = 0;                                                                       // read data points

       ifstream dataStream;
       dataStream.open(inputFile, ios::in);// open data file
       dataIn = &dataStream;

       ifstream queryStream;
       queryStream.open("input/query.
pts", ios::in);// open data file
       queryIn = &queryStream;

       while (nPts < maxPts && readPt(*dataIn, dataPts[nPts])) nPts++;

       kdTree = new ANNkd_tree(                                        // build search structure
                                       dataPts,                                        // the data points
                                       nPts,                                           // number of points
                                       dim);                                           // dimension of space

       while (readPt(*queryIn, queryPt))                       // read query points
       {
               kdTree->annkSearch(                                             // search
                               queryPt,                                                // query point
                               k,                                                              // number of near neighbors
                               nnIdx,                                                  // nearest neighbors (returned)
                               dists,                                                  // distance (returned)
                               eps);                                                   // error bound

               double x = queryPt[0];
               double y = queryPt[1];
               double z = queryPt[2];
               double _x = 0.0;
               double _y = 0.0;
               double _z = 0.0;

               #pragma region Compute covariance matrix

               for (int i = 0; i < k; i++)
               {
                       _x += dataPts[nnIdx[i]][0];
                       _y += dataPts[nnIdx[i]][1];
                       _z += dataPts[nnIdx[i]][2];
               }

               _x = _x/k; _y = _y/k; _z = _z/k;

               double A[3][3] = {0,0,0,0,0,0,0,0,0};

               for (int i = 0; i < k; i++)
               {
                       double X = dataPts[nnIdx[i]][0];
                       double Y = dataPts[nnIdx[i]][1];
                       double Z = dataPts[nnIdx[i]][2];

                       A[0][0] += (X-_x) * (X-_x);
                       A[0][1] += (X-_x) * (Y-_y);
                       A[0][2] += (X-_x) * (Z-_z);

                       A[1][0] += (Y-_y) * (X-_x);
                       A[1][1] += (Y-_y) * (Y-_y);
                       A[1][2] += (Y-_y) * (Z-_z);

                       A[2][0] += (Z-_z) * (X-_x);
                       A[2][1] += (Z-_z) * (Y-_y);
                       A[2][2] += (Z-_z) * (Z-_z);
               }

               MatrixXd C(3,3);
               C A[0][0]/k, A[0][1]/k, A[0][2]/k,
                       A[1][0]/k, A[1][1]/k, A[1][2]/k,
                       A[2][0]/k, A[2][1]/k, A[2][2]/k;

               #pragma endregion

               EigenSolver<MatrixXd> es(C);
               MatrixXd Eval = es.eigenvalues().real().asDiagonal();
               MatrixXd Evec = es.eigenvectors().real();

               MatrixXd u,v,n;
               double a = Eval.row(0).col(0).value();
               double b = Eval.row(1).col(1).value();
               double c = Eval.row(2).col(2).value();

               #pragma region SET U V N

               if(a>b && a>c)
               {
                       u = Evec.row(0);
                       if(b>c)
                       { v = Eval.row(1); n = Eval.row(2);}
                       else
                       { v = Eval.row(2); n = Eval.row(1);}
               }
               else
               if(b>a && b>c)
               {
                       u = Evec.row(1);
                       if(a>c)
                       { v = Eval.row(0); n = Eval.row(2);}
                       else
                       { v = Eval.row(2); n = Eval.row(0);}
               }
               else
               {
                       u = Eval.row(2);
                       if(a>b)
                       { v = Eval.row(0); n = Eval.row(1);}
                       else
                       { v = Eval.row(1); n = Eval.row(0);}
               }

               #pragma endregion

               MatrixXd O(3,3);
               O u,
                       v,
                       n;

               MatrixXd UV(k,3);
               VectorXd N(k,1);

               for( int i=0; i<k; i++)
               {
                       double x = dataPts[nnIdx[i]][0];;
                       double y = dataPts[nnIdx[i]][1];;
                       double z = dataPts[nnIdx[i]][2];;

                       MatrixXd X(3,1);
                       X x-_x,
                                y-_y,
                                z-_z;

                       MatrixXd T = O * X;

                       double ui = T.row(0).col(0).value();
                       double vi = T.row(1).col(0).value();
                       double ni = T.row(2).col(0).value();

                       UV.row(i) ui * ui, ui * vi, vi * vi;
                       N.row(i) ni;
               }

               Vector3d S = UV.colPivHouseholderQr().solve(N);

               MatrixXd II(2,2);

               II S.row(0).value(), S.row(1).value(),
                         S.row(1).value(), S.row(2).value();

               EigenSolver<MatrixXd> es2(II);

               MatrixXd Eval2 = es2.eigenvalues().real().asDiagonal();
               MatrixXd Evec2 = es2.eigenvectors().real();

               double kmin, kmax;
               if(Eval2.row(0).col(0).value() < Eval2.row(1).col(1).value())
               {
                       kmin = Eval2.row(0).col(0).value();
                       kmax = Eval2.row(1).col(1).value();
               }
               else
               {
                       kmax = Eval2.row(0).col(0).value();
                       kmin = Eval2.row(1).col(1).value();
               }

               double thresh = 0.0020078;

               if (kmin < thresh && kmax > thresh )
                       cout     x " " y " " z " "
                                        255 " " 0 " " 0
                                        endl;
               else
                       cout     x " " y " " z " "
                                        255 " " 255 " " 255
                                        endl;
       }

       delete [] nnIdx;
   delete [] dists;
   delete kdTree;
       annClose();
}


Thanks,
NISHA

Views: 819

Replies to This Discussion

Hi Nisha,

 

can you post a Rhino file with the xyz point locations? I don't know much about Eigen vectors so I won't be able to help you there, but I might have some other ideas.

 

--

David Rutten

david@mcneel.com

Poprad, Slovakia

I have sent the file to your id

david@mcneel.com. 

Got it. Looking into it now, but going to bed soon so don't hold out on an answer right away.

 

--

David Rutten

david@mcneel.com

Poprad, Slovakia

Hey David, 

Did you get a chance to look into it?

 

Thanks,

Nisha

Hi Nisha,

 

yes a bit. Nothing so far. I found a bunch of points away from the finger-print scan, I assume those can be safely ignored? My initial thought was to smooth the pointcloud in a smart way, then see which points are above and which below the smoothed mesh, this should then tell you which points belong to ridges and which to valleys.

 

But this is just a thought, I haven't tried to  actually do this yet.

 

--

David Rutten

david@mcneel.com

Poprad, Slovakia

Meshlab is built on http://vcg.sourceforge.net/index.php/Main_Page (VCG Library). I don't know how many of their algorithms are accesible, but it might be worth a shot.

 

 

RSS

About

Translate

Search

Photos

  • Add Photos
  • View All

© 2024   Created by Scott Davidson.   Powered by

Badges  |  Report an Issue  |  Terms of Service