algorithmic modeling for Rhino
Daniel Piker and I are excited to repackage an updated Exoskeleton with his new Plankton-based mesh wireframe thickening tool Cytoskeleton into a single GHA.
Although both components have been tested and improved upon from their original setups, this GHA is still a work in progress, and hopefully in the upcoming months you'll find further upgrades to these in addition to new mesh thickening components.
For now, Cytoskeleton relies on Plankton for its functionality. You can read more about Cytoskeleton here: http://www.grasshopper3d.com/group/plankton/forum/topics/cytoskeleton
The new exoskeleton has several fundamental changes to it, and therefore when you add it to your library folder, it won't overwrite the old one.
New features and changes:
To install, take all of the files from the attached zipped folder (check their properties and make sure they are unblocked) and add them to your special folders -> components folder. If you have the most recent Plankton files, then you probably don't need to add the Plankton files, but if you haven't updated recently, then you will want to replace them with these, as they have been compiled from the most current version.
Here is a quick example file to get you started...it uses Weaverbird:
If you're interested in more complex examples, you can take a look at these. One is inspired by Daniel's radiolarian. Here I've made a definition that takes advantage of Exoskeleton's new variable strut radius functionality. I've also included another quick look at Cytoskeleton, used in conjunction with an isosurface geometry wrapper script I've put out there already (and which I will tighten up and compile as a component in a future release of Exoskeleton). These files rely on both Weaverbird and Kangaroo (which you really must have anyway). Also, a couple of them use the excellent Human plug-in for its great shader component, but it isn't necessary for it to run. The Exoskeleton Vase definition and Cytoskeleton Phyllotaxis definition both run lighter than the others.
Many, many thanks to Will Pearson, whose work on Plankton is amazing, and who also has given some invaluable contributions to Exoskeleton in terms of project organisation. I'd also like to thank Giulio Piacentino for Weaverbird, and for general knowledge and support, and Mateusz Zwierzycki for the same, as well as for sharing his code for convex hulls, which although not used explicitly here, was very helpful in many regards for the development of Exoskeleton. Of course I also have to thank Daniel for bringing me on board to this project and for the countless insights, resources, ideas and inspiration he's shared so generously.
Lastly, I'd like to just say that I am really, really keen to get a curve-based Exoskeleton component added to this component group. I think many people were hoping to have this sooner, and I apologize for not getting it out...some of the bugs have proven to be very tricky (for me at least!) to resolve, and a number of other projects got to me before I could put my time back on these tools, but if you hang in there, I promise that I'll get it out as soon as I can! And hopefully, these improvements to Exoskeleton can tide you over until then :)
Exoskeleton2 is open-source on Github, so if you'd like to see the code, please have a look around!
Comment
Awsome David and Daniel! Love to give this a go!
Thank you!
Very nice…
great news and great work!
thank you!!
Welcome to
Grasshopper
Added by Parametric House 0 Comments 0 Likes
Added by Parametric House 0 Comments 0 Likes
Added by Parametric House 0 Comments 0 Likes
Added by Parametric House 0 Comments 0 Likes
© 2024 Created by Scott Davidson. Powered by
You need to be a member of Grasshopper to add comments!