algorithmic modeling for Rhino
The team implemented a series of Parametric Design strategies aiming in reducing the overall energy consumption of a hypothetical building. Among others, the group examined form-finding methods based on self-shading and developed an opening mechanism, the ‘Rotrackable’ that allows sunlight during winter while providing shading and ventilation during summer. The team attempted to find an optimum balance between the amount of solar radiation measured on the façade of the building and the overhang of the roof. At the same time, the Sun Vector definition, adapted from Ted Ngai and developed by Andrew Heumann was implemented to define the rotation and angle of the ‘Rotracable’ in respect to the position of the Sun throughout the year. The incoming light levels in the building were subsequently measured to verify compliance with Lighting Standards. This last step has also defined the minimum number and size of the openings carrying the ‘Rotracable’ mechanism which could be completely automated (if paired with a sensor-actuator system) or work as a low-tech device (with a number of fixed positions, manually operated by the user).
Tags:
Albums: DvsI
Location: [A.R.C] Architecture and research center, University of Nicosia, Nicosia Cyprus
Comment
Welcome to
Grasshopper
Added by Parametric House 0 Comments 0 Likes
Added by Parametric House 0 Comments 0 Likes
Added by Parametric House 0 Comments 0 Likes
Added by Parametric House 0 Comments 0 Likes
Added by Parametric House 0 Comments 0 Likes
© 2024 Created by Scott Davidson. Powered by
You need to be a member of Grasshopper to add comments!