Grasshopper

algorithmic modeling for Rhino

En matemáticas, la esponja de Menger (a veces llamada cubo de Menger o bien cubo o esponja de Menger-Sierpiński o de Sierpiński) es un conjunto fractal descrito por primera vez en 1926 por Karl Menger mientras exploraba el concepto de dimensión topológica.

Al igual que la alfombra de Sierpinski constituye una generalización bidimensional del conjunto de Cantor, esta es una generalización tridimensional de ambos. Comparte con estos muchas de sus propiedades, siendo un conjunto compacto, no numerable y de medida de Lebesgue nula. La esponja tiene una superficie infinita y al mismo tiempo encierra un volumen cero.

Es de destacar su propiedad de curva universal, pues es un conjunto topológico de dimensión topológica uno, y cualquier otra curva o grafo es homeomorfo a un subconjunto de la esponja de Menger.

Views: 161

Comment

You need to be a member of Grasshopper to add comments!

About

Translate

Search

Videos

  • Add Videos
  • View All

© 2024   Created by Scott Davidson.   Powered by

Badges  |  Report an Issue  |  Terms of Service