algorithmic modeling for Rhino
the module was created in Grasshopper and am trying to have it panel on a parametric surface but limited skills have stopped me here....
Ultimately the modules are going to have connections and I need to be able to control the distance between the modules next to it.
the images attached were just made manual, we need them parametric for class
any and all help in figuring out how to penalize the module on the parametric surface would be greatly appreciated.
Tags:
Box morph is the easiest way to get a 3D geometry dynamically arrayed across a surface. So you would take your module and build a bounding box around it (you may have to rotate it so that it's laying flat) and then subdivide your surface using the divide domain component and feed that into a surface box. Your base geometry, base geometry bounding box and surface boxes will all drive the box morph.
From the looks of your geometry, it appears that it is designed to nest in a particular way that isn't strictly rectilinear, but is more staggered, so that the top corner of one element fits into the bottom corner of an adjacent element. You can achieve this using the box morph, but you have to get pretty creative with how you subdivide your surface:
I'm attaching a couple of files...first of all is your definition with the changes in it to make the above. But also I used some components that I made recently (will release them in a package with a bunch more hopefully soon) called tree sloth, which helps manage data trees and lists. I used a couple of those components, so I'm also attaching the gha for those. Just copy that file into your components folder (under file-> special folders) and restart rhino/gh. The new components are just layered into different parts of the "Sets" components.
To explain what I did: you basically you want to have adjacent sub-surfaces along your guide surface to overlap at the top and bottom thirds. There are any number of ways to extract these surfaces...I just pulled out strips in each column and culled every fourth element, but shifted by one in alternating columns. So in the first column I take strips 1,2 and 3 and skip 4, take 5, 6 and 7, etc. and in the second column I start at number 3, 4, 5 and skip 6, then take 7, 8, 9, etc. Then I collect each of these batches of three strips and take the bottom left corner and upper right corner UV domains to create the target surfaces for the morph.
Hope this helps you out...
Nice components David,
I saw you posted them some time ago, but never downloaded them.
Welcome to
Grasshopper
Added by Parametric House 0 Comments 0 Likes
Added by Parametric House 0 Comments 0 Likes
Added by Parametric House 0 Comments 0 Likes
Added by Parametric House 0 Comments 0 Likes
© 2024 Created by Scott Davidson. Powered by